

# An analytical chemist wanting to find the percentage of water in a can of soup obtains the following results. What is the percentage of water in the soup?

| Initial mass of soup                                                               | 223.1 g                                                   |
|------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Second mass, after heating                                                         | 33.6 g                                                    |
| Third mass, after heating                                                          | 24.3 g                                                    |
| Fourth mass, after heating                                                         | 24.3 g                                                    |
| Initial mass – constant mas<br>223.1 – 24.3<br>= 198.8<br>∴ % of water in the soup | s after drying<br>b by mass = $\frac{198.8}{223.1}$ X 100 |

### Amounts of gases Gases: Spread to fill the volume available Have low densities Are easily compressible Mix together rapidly Kinetic molecular theory of gases · Gas particles widely separated • Rapidly moving in random, straight-line motion It is not convenient to measure gas amounts by weight. When the internal volume of a gas container is known, it is possible to calculate the mol quantity using the General Gas Equation: pV = nRTp = gas pressure; V = gas volume; T = temperature;R = General Gas Constant = 8.31 J K<sup>-1</sup> mol<sup>-1</sup> when pressure is in KPa; volume in L and T in °K Once the amount of gas is found, its mass can be calculated from: $n = \frac{m}{M}$

#### Molar Volume of a Gas

- The volume of 1 mol of a gas depends on the gas temperature and pressure.
- At Standard Temperature and Pressure (STP; 0°C and 1 atmosphere), the Molar Volume of a gas is 22.4 L mol<sup>-1</sup>.
- At Standard laboratory Conditions (SLC; 25°C and 1 atmosphere) the Molar Volume of a gas is 24.5 L mol<sup>-1</sup>.

The mol quantity of a gas can be also be calculated from:

 $n = \frac{V}{V_m}$ 





| 6. Calculate the amount (in mole) of:                                     |                            |
|---------------------------------------------------------------------------|----------------------------|
| a. NaCl in 5.85 g of the salt                                             | a. 0.100 mol               |
| b. Fe atoms in 112 g of iron                                              | b. 2.01 mol                |
| c. $CO_2$ molecules in 2.2 g of carbon dioxide                            | c. 0.050 mol               |
| d. Cl <sup>-</sup> ions in 13.4 g of nickel chloride (NiCl <sub>2</sub> ) | d. 2.07 X 10-1 mol         |
| e. $O^{2-}$ ions in 159.7 g of iron(III) oxide (Fe $_2O_3$ )              | e. 3.000 mol               |
| 7. Calculate the mass of                                                  |                            |
| a. 3.0 mol of oxygen molecules (O <sub>2</sub> )                          | a. 96 g                    |
| b. 1.2 mol of aluminium chloride (AICl <sub>3</sub> )                     | b. 1.6 X 10 <sup>2</sup> g |
|                                                                           | c. 28 a                    |

| 1.42 L What mass of avugan is present at a pro              |                          |
|-------------------------------------------------------------|--------------------------|
| 1.42 L. What mass of oxygen is present at a pre             | essure of 15 000 KPa and |
| temperature of 15.0°C?                                      | 285 g                    |
|                                                             |                          |
| <ol><li>Calculate the mass of the following gases</li></ol> |                          |
| a. 3.5 L of argon at SLC.                                   | a. 5.7 g                 |
| b. 250 mL of ammonia (NH <sub>3</sub> ) at STP.             | b. 0.190 g               |
|                                                             |                          |
|                                                             |                          |
|                                                             |                          |
|                                                             |                          |
|                                                             |                          |
|                                                             |                          |

## Finding the composition of a compound

Review Chemistry 2: Chap 2.2

## Chemistry 2: p18 10. Determine the percentage composition of the following compounds a. Lead (IV) oxide (PbO<sub>2</sub>) a. 13.4% b. Sodium carbonate (NaCO<sub>3</sub>) b. 45.3% 11. A gaseous hydrocarbon that is used as a fuel for high-temperature welding of metals contains 92.3% carbon. a. Determine its empirical formula. b. If the molar mass of the hydrocarbon is 26 g b. C<sub>2</sub>H<sub>2</sub> mol<sup>-1</sup>, find its molecular formula.

 When 1.66 g of tungsten (W) is heated in excess chlorine gas, 3.58 g of tungsten chloride is produced. Find the empirical formula of tungsten chloride WCl<sub>6</sub>

13. A sample of blue copper (II) sulfate crystals weighing 2.55 g is heated and decomposes to produce 1.63 g of anhydrous copper (II) sulfate. Show that the formula of the blue crystals is  $CuSO_4.5H_2O$ .

| The <b>mole</b> is particularly useful for calculating the quantities of substances<br>consumed or produced in chemical reactions. Consider:<br>Pb(NO <sub>3</sub> ) <sub>2</sub> (aq) + 2KI (aq) $\rightarrow$ PbI <sub>2</sub> (s) + 2KNO <sub>3</sub> (aq)<br>The coefficients indicate the relative number of moles thus:<br>$\frac{n[Pb(NO_3)]}{n(KI)} = \frac{1}{2} \qquad \frac{n[Pb(NO_3)]}{n(PbI)} = \frac{1}{1} \qquad \frac{n(KI)}{n(PbI)} = \frac{2}{1}$ | e quantities of substance                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| $Pb(NO_3)_2 (aq) + 2KI (aq) \rightarrow PbI_2 (s) + 2KNO_3 (aq)$<br>The coefficients indicate the relative number of moles thus:<br>$\frac{n[Pb(NO_3)]}{n(KI)} = \frac{1}{2} \qquad \frac{n[Pb(NO_3)]}{n(PbI)} = \frac{1}{1} \qquad \frac{n(KI)}{n(PbI)} = \frac{2}{1}$                                                                                                                                                                                              | onsider:                                           |
| The coefficients indicate the relative number of moles thus:<br>$\frac{n[Pb(NO_3)]}{n(KI)} = \frac{1}{2} \qquad \frac{n[Pb(NO_3)]}{n(PbI)} = \frac{1}{1} \qquad \frac{n(KI)}{n(PbI)} = \frac{2}{1}$                                                                                                                                                                                                                                                                  | aq)                                                |
| $\frac{n[Pb(NO_3)]}{n(KI)} = \frac{1}{2} \qquad \frac{n[Pb(NO_3)]}{n(PbI)} = \frac{1}{1} \qquad \frac{n(KI)}{n(PbI)} = \frac{2}{1}$                                                                                                                                                                                                                                                                                                                                  | moles thus:                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{n(\text{KI})}{n(\text{PbI})} = \frac{2}{1}$ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                    |



| 16. A solution containing 10.0 g of silver nitrate is mixed with a containing 10.0 g of barium chloride. What mass of silver ch precipitate is likely to be produced? | solution<br>Ioride |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| $2$ AgNO <sub>3</sub> (aq) + BaCl <sub>2</sub> (aq) $\rightarrow$ 2AgCl (s) + BaNO <sub>3</sub> (aq)                                                                  | 8.44 g             |
|                                                                                                                                                                       |                    |
|                                                                                                                                                                       |                    |
|                                                                                                                                                                       |                    |
|                                                                                                                                                                       |                    |
|                                                                                                                                                                       |                    |
|                                                                                                                                                                       |                    |

## Finding the Composition of a mixture

- Most commercial products mixtures.
- It is possible to find the percentage of one component (ion) by gravimetric analysis.
- Involves forming a suitable precipitate with the ion and calculating the amount of the ion in the precipitate.
- A suitable precipitate should:
- · Have a known formula
- Have low solubility
- Be stable when heated (so it can be dried easily)
- Not form precipitates with other ions that are likely to be present.

| TABLE 2.4 Precipitates formed for gravimetric analysis |                                               |                         |
|--------------------------------------------------------|-----------------------------------------------|-------------------------|
| Element to be analysed                                 | Precipitate                                   | Compound name           |
| Chlorine                                               | AgCl                                          | Silver chloride         |
| Bromine                                                | AgBr                                          | Silver bromide          |
| lodine                                                 | Agl                                           | Silver iodide           |
| Iron                                                   | Fe <sub>2</sub> O <sub>3</sub>                | Iron(III) oxide         |
| Phosphorus                                             | Mg <sub>2</sub> P <sub>2</sub> O <sub>7</sub> | Magnesium pyrophosphate |
| Magnesium                                              | Mg <sub>2</sub> P <sub>2</sub> O <sub>7</sub> | Magnesium pyrophosphate |
| Sulfur                                                 | BaS0₄                                         | Barium sulfate          |
| Barium                                                 | BaSO <sub>4</sub>                             | Barium sulfate          |
|                                                        |                                               |                         |





A 7.802 g sample of baby cereal was blended with water and filtered. Excess silver nitrate was added, causing silver chloride to precipitate. The precipitate was collected by filtration, dried and weighed. A mass of 0.112 g was obtained. What is the percentage of sodium chloride in the baby food assuming that all the chloride is present as sodium chloride?

#### Solution

The full equation for the reaction is:  $\begin{array}{l} AgNO_{3}(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_{3}(aq) \\ Alternatively, this may be written as an ionic equation:$  $Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s) \\ Calculating the amount in mol of AgCl present in the precipitate:$  $<math display="block">\begin{array}{l} n(AgCl) = \frac{m(AgCl)}{M(AgCl)} = \frac{0.112 \text{ g}}{143.4 \text{ g mol}^{-1}} = 0.000 \text{ 781 mol} \\ \end{array}$ From the equation, 1 mole of NaCl yields 1 mole of AgCl.  $\begin{array}{l} \frac{n(NaCl)}{n(AgCl)} = \frac{1}{1} \\ n(NaCl) = n(AgCl) = 0.000 \text{ 781 mol} \\ m(NaCl) = n(NaCl) \times M(NaCl) \\ = 0.000 \text{ 781 mol} \times 58.5 \text{ g mol}^{-1} = 0.0457 \text{ g} \end{array}$  The content of saccharine ( $C_7H_7NO_3S$ ) in diet sweetener tablets can be determined by oxidising the sulfur to sulfate and precipitating it as barium sulfate (BaSO<sub>4</sub>). A 0.607 g sample yields 0.3196 g barium sulfate. What is the percentage of saccharine in the sample?

#### Solution

## Chapter review

| 19. Find the amount in mol of:                                                |              |  |  |
|-------------------------------------------------------------------------------|--------------|--|--|
| a. Ca atoms in 60.0 g of calcium.                                             | a. 1.50 mol  |  |  |
| c. $H_2O$ molecules in 20.0 g of $CuSO_4.5H_2O$                               | b. 0.401 mol |  |  |
| 20. Find the mass of:                                                         |              |  |  |
| a. 0.30 mol of zinc atoms.                                                    | a. 20 g      |  |  |
| c. 0.16 mol of iron(III) oxide ( $Fe_2O_3$ )                                  | b. 26 g      |  |  |
| 22. 6.00 g of helium gas was blown into a fairground balloon. On the day, the |              |  |  |
| temperature was 28.0°C and the pressure inside the balloon was 103.4          |              |  |  |
| KPa. Assuming it is infinitely elastic, to what volume would the balloon      |              |  |  |
| inflate?                                                                      | 36.3 L       |  |  |

| 23. Calculate the volume of the following gases:                                                                                                                 |                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| <li>b. 1.50 mol of oxygen at STP</li>                                                                                                                            | a. 22.4 L                       |
| d. 1.23 X 10 <sup>22</sup> atoms of helium at SLC                                                                                                                | b. 0.49 L                       |
| 25. Solutions of silver nitrate and potassium chron<br>red precipitate of silver chromate:                                                                       | nate react to produce a         |
| 2AgNO <sub>3</sub> (aq) + $K_2$ CrO <sub>4</sub> (aq) $\rightarrow$ Ag <sub>2</sub> CrO <sub>4</sub> (s) +<br>If 0.778 g of precipitate is formed in a reaction. | 2KNO <sub>3</sub> (aq)<br>find: |
|                                                                                                                                                                  | a. 0.455 g                      |
| a. the mass of potassium chromate that read                                                                                                                      |                                 |
| <ul> <li>b. the mass of silver nitrate that reacted</li> </ul>                                                                                                   | b. 0.797 g                      |

| 26. Magnesium in distress flares burns in air according to                                                           | o the equa | ition:  |
|----------------------------------------------------------------------------------------------------------------------|------------|---------|
| $2Mg(s) + O_2(g) \rightarrow 2MgO(s)$                                                                                |            |         |
| If 10.0 g of magnesium burns in air, calculate:                                                                      |            |         |
| a. the mass of magnesium oxide produced                                                                              | a. 1       | l6.6 g  |
| b. the mass of oxygen that reacts                                                                                    | b. 6       | 6.58 g  |
| 27. Lithium peroxide may be used as a portable oxygen s                                                              | ource for  |         |
| astronauts. Calculate the volume of oxygen gas, meas                                                                 | sured at 2 | 5oC and |
| pressure of 101.3 KPa, that is available from the reaction of 0.500 kg of                                            |            |         |
| lithium peroxide with carbon dioxide according to the e                                                              | equation:  |         |
| $2\text{Li}_{2}\text{O}_{2}(s) + 2\text{CO}_{2}(g) \longrightarrow 2\text{Li}_{2}\text{CO}_{3}(s) + \text{O}_{2}(g)$ | 1          | 33 L    |

| 31. If 16.0 g of hydrogen sulfide is mixed with 20.0 g of sulfur d<br>they react according to the equation:                                                                                                       | ioxide and        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| $2H_2S (g) + SO_2 (g) \rightarrow 2H_2O (I) + 2S (s)$                                                                                                                                                             |                   |  |
| a. what mass of sulfur is produced?                                                                                                                                                                               | a. 22.6 g         |  |
| b. what mass of reactant is left after the reaction?                                                                                                                                                              | b. 4.94 g         |  |
| <ul> <li>33. The following compounds are used in fertilizers as a source of nitrogen.</li> <li>Calculate the percentage of nitrogen, by mass, in:</li> <li>c. urea {CO(NH<sub>2</sub>)}</li> <li>46.7%</li> </ul> |                   |  |
| 34. Find the empirical formula of:                                                                                                                                                                                |                   |  |
| b. an oxide of copper that contains 89% copper by mass                                                                                                                                                            | Cu <sub>2</sub> O |  |
|                                                                                                                                                                                                                   |                   |  |



- a. Lead(II) chloride, lead(II) hydroxide, copper(II) hydroxide.
- b.  $Pb(NO_{3})_{2}(aq) + CuCl_{2}(aq) \rightarrow PbCl_{2}(s) + Cu(NO_{3})_{2}(aq)$  $Pb^{2+}(aq) + Cl^{-}(aq) \rightarrow PbCl_{2}(s)$

 $Pb(NO_3)_2$  (aq) + Ba(OH)<sub>2</sub> (aq)  $\rightarrow$  Pb(OH)<sub>2</sub> + Ba(NO\_3)<sub>2</sub> (aq) Pb<sup>2+</sup> (aq) + 2OH<sup>-</sup> (aq)  $\rightarrow$  Pb(OH)<sub>2</sub> (s)

 $\begin{aligned} & \operatorname{CuCl}_2(\operatorname{aq}) + \operatorname{Ba(OH)}_2(\operatorname{aq}) \longrightarrow \operatorname{Cu(OH)}_2(\operatorname{s}) + \operatorname{BaCl}_2(\operatorname{aq}) \\ & \operatorname{Cu}^{2+}(\operatorname{aq}) + 2\operatorname{OH}^-(\operatorname{aq}) \longrightarrow \operatorname{Cu}(\operatorname{OH})_2(\operatorname{s}) \end{aligned}$ 

 Design a flowchart to show how the salt content of a savory spread could be determined by gravimetric analysis.

#### Summary

- The amount of substance is measured in mole (*n*)
- The number of particles in one mole is called Avogadro's Number (*NA*).  $N_A = 6.02 \times 10^{23}$  particles
- The relationship between amount of substance (*n*) and, mass (*m*), and molar mass (*M*) is given by  $n = \frac{m}{m}$

- The relationship between volume (V), pressure (P), temperature (T) and amount of a gas in mol (n) is given by the general gas equation pV = nRT
- At STP one mole of a gas occupies 22.4 L and at SLC one mole of gas occupies 24.5 L.

- The number of mole of a gas can be determined from the volume (V) and the molar volume (Vm)  $n = \frac{V}{Vm}$
- Empirical formula indicates the simplest whole-number ratio of atoms present in a compound.
- A molecular formula gives the actual number of atoms of each element present in a molecule of the compound.
- The molecular formula can be determined from an empirical formula if the molar mass (molecular weight) is known.
- The stoichiometry of a chemical reaction can be used to determine the amount of product formed or the amount of reactant consumed.