Week $3 \quad$ Volumetric Analysis

Concentration

Is a measure of the amount of solute in a specified volume of solvent. is often expressed as molar concentration referred to as molarity Defined as: the amount of solute in mol, dissolved in 1 L of solution.
concentration $=\frac{\text { amount of solute, in } \mathrm{mo}}{V \text { l }}$ volume of solution, in L
or $\quad c=\frac{n}{V}$
Unit $=\mathrm{mol} \mathrm{L}^{-1}$, which is given the symbol \mathbf{M}

Are solutions with accurately known concentrations.
Substances that are so pure in that the amount in mol can be calculated accurately from their mass are called primary standards.
primary standard should:
Be readily obtainable in pure form
ave a known formula
都
Have a high molar mass to minimise the effect of errors in weighing
Be inexpensive
Examples of primary standards are

- Bases
anhydrous sodiumcarbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, Sodium borate $\left(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}\right)$
- Acids

Hydrated oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} .2 \mathrm{H}_{2} \mathrm{O}\right)$ and potassium hydrogen phthalate $\left\{\mathrm{KH}\left(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{O}_{4}\right)\right\}$

Standard Solutions

g. 1.00 L of 2.00 M solution of NaCl contains 2.00 mol of dissolved .g. Th

Another measure of concentration is mass per unit volume e.g. grams of solute dissolved in each litre of solution ($\mathrm{g} \mathrm{L}^{-1}$).

To convert $\mathrm{mol} \mathrm{L}^{-1}$ to $\mathrm{g} \mathrm{L}^{-1}$, multiply the molarity by the molar mass of the solute e.g.
a 2.00 M NaCl solution has a concentration of
$2.00 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{X}(23.0+35.5) \mathrm{g} \mathrm{mol}^{-1}=117 \mathrm{~g} \mathrm{~L}^{-1}$

Steps in preparing a standard solution. A known mass of solute is used to make a known volume of solution (in volumetric flask).

Volumetric Analysis

Involves reacting a measured volume of a standard solution with a measured volume of the solution of unknown concentration.

Solutions are reacted completely in the mole ratio indicated by the stoichiometric equation. This is known as performing a titration.

Steps in an acid-base titration

Equivalence point

When solutions have been mixed in the mole ratio shown by the reaction equation e.g.
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
At the equivalence point: $n(\mathrm{HCl})=n(\mathrm{NaOH})=1$
$2 \mathrm{HCl}(\mathrm{aq})+\mathrm{Ca}(\mathrm{OH})_{2}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
At the equivalence point: $n(\mathrm{HCl}): n\left\{\mathrm{Ca}(\mathrm{OH})_{2}\right\}=2: 1$ $n(\mathrm{HCl})=2 n\left\{\mathrm{Ca}(\mathrm{OH})_{2}\right\}$

Identifying the equivalence point

- Solutions often colorless in acid-base titrations

It is usual to repeat titrations until 3 concordant readings are obtained (readings differ by a maximum of 0.10 mL from highest to lowest - one drop from burette is approx. 0.05 mL)

- Indicator chosen such that color change occurs at the equivalence point
- Titrations are repeated several times and the results averaged

How accurate are our measurements?

Depends on the calibration of the equipment used
Typical uncertainties associated with volumetric analysis are:

- 20 mL pipette $\pm 0.05 \mathrm{~mL}$
- Burette $\pm 0.02 \mathrm{~mL}$ for each reading
- 250.0 mL volumetric flask $\pm 0.3 \mathrm{~mL}$

TABE 3.1 Sample titration results.

- First reading was obviously a test to give an idea of where the end point will be - The 3 titres in bold are concordant

Difference between highest and lowest is $19.86-19.78=0.08 \mathrm{~mL}$

- The mean titre is
$\frac{19.82+19.78+19.86}{3}=19.82$

Concentration

11. Calculate the molarity of :
b. 100.0 mL solution containing 0.63 g of anhydrous sodium carbonate $\mathrm{Na}_{2} \mathrm{CO}_{3} \quad 0.059 \mathrm{M}$ Schools normally purchase concentrated $(14 \mathrm{M})$ nitric acid and then dilute it
for use. What volume is required to prepare 2.0 L of 0.15 M acid? 21 mL

Volumetric analysis

12. What of mass of solute is required to prepare the following standard solutions?
a. 250 mL of 0.500 M sodium oxalate $\mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$
13. A student is to perform an analysis of sodium hydroxide solution by titrating it with standard hydrochloric acid, as shown in Fig. 3.5. Before beginning the student rinses the glassware that is to be used in the analysis
However, the student does not wish to wait until the glassware has dried before using it. For each of the following apparatus, a, b, and c, state if it should be:
Rinsed with de-ionised water only
ii. Rinsed with sodium hydroxide solution only
iii. Rinsed with hydrochloric acid only
a. Pipette
b. Burette
a. ii
b. iii
c. i
c. Conical flask

