

Reversible reactions

Water melting
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Water freezing
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}$ (s)
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \prod \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$

Nickel-metal hydride (NiMH) batteries
$\mathrm{NiOOH}(\mathrm{s})+\mathrm{MH}(\mathrm{s}) \prod_{\text {Chargnng }}^{\substack{\text { Dischaging }}} \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{M}(\mathrm{s})$

Ammonia
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Pi 2 \mathrm{NH}_{3}(\mathrm{~g})$

Equilibrium is a dynamic state since forward and back reactions occur simultaneously.

During dynamic equilibrium

- The amounts and concentrations of chemical substances remain constant
- The total gas pressure is constant (if gases are involved)
- The temperature is constant
- The reaction is 'incomplete' (all of the substances are present in the equilibrium mixture)

The Equilibrium Law

Consider the reaction
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$ П $2 \mathrm{NH}_{3}(\mathrm{~g})$
An unlimited number of different equilibrium mixtures of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} can be prepared:

TAREE 16.1 Concentrations of different equilibrium mixtures for
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ at $400^{\circ} \mathrm{C}$

Equllbrium mixture		$\left[\begin{array}{c} {\left[H_{0}\right]} \end{array}\right.$	$\left[\begin{array}{c} {[(N H)} \\ (M)] \end{array}\right.$	$\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{N}_{2}\left[\mathrm{H}_{2}\right]\right.}$	$\frac{\left[\mathrm{NH}_{4}\right]^{2}}{\left.\mathrm{~N}_{2} \mathrm{lH}_{2}\right]^{3}}$
A	0.25	0.75	0.074	0.39	0.052
B	0.55	0.65	0.089	0.25	0.052
c	0.0025	0.0055	4.6×10^{-6}	0.33	0.051
D	0.0011	0.0011	2.7×10^{-7}	0.23	0.051

There is no obvious relationship between $\mathrm{N}_{2}, \mathrm{H}_{2}$ or NH_{3}
No relationship can be seen for the values of $\frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{N}_{2}\right]\left[\mathrm{H}_{2}\right]}$ or many other similar fractions

For the equation
$a \mathrm{~W}+b \mathrm{X} \prod c \mathrm{Y}+d \mathrm{Z}$ at a particular temperature then:
$K=\frac{[\mathrm{Y}]^{c}[\mathrm{Z}]^{d}}{[\mathrm{~W}]^{a}[\mathrm{X}]^{b}}$
where K is a constant
This is known as the equilibrium law.
Note that the Equilibirum Law depends on the equation used for the reaction e.g.
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$, for which $K_{1}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}$
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$, for which $K_{2}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}{\left[\mathrm{NO}_{2}\right]^{2}}$
$\frac{1}{2} \mathrm{~N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons \mathrm{NO}_{2}(\mathrm{~g})$, for which $K_{3}=\frac{\left[\mathrm{NO}_{2}\right]}{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]^{1 / 2}}$
Therefore, it is important that the equation be specified when an equilibrium constant is quoted

What does an equilibrium constant tell us?

The value of K is based on equilibrium concentrations of products divided by equilibrium concentrations of reactants.

Effect of temperature on equilibria

Therefore, it gives an indication of how far forward the reaction proceeded before equilibrium was reached

- When K is between 10^{-4} and 10^{4}, there will be significant amounts of reactants and products at equilibrium
- When K is very large ($>10^{4}$) the equilibrium mixture consists mainly of products.

When K is very small $\left(<10^{-4}\right)$, the equilibrium mixture consist mainly of reactants.

The value of K depends on temperature.
It is not affected by addition of reactants or products, changes in pressure or the use of catalysts.
The effect of temperature on K depends on whether the reaction is exothermic or endothermic
As T° increases:
For exothermic reactions the amount of products decreases (K decreases) o to specify the temperature at which an equilibrium constant has been measured.

Calculations using equilibrium constants

The following examples deal with equilibrium reactions in which reactants are
Worked example 16.2c
ta particuar tenperature 0.0.500 mo o t 50 , 0.01000 mol 00, and0.1500 mola cso, were $2 \mathrm{SO}_{2}(\mathrm{k})+\mathrm{O}_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{SO},(\mathrm{k})$
Worked example 16.2a
Caculate the value of the equilibrium constant tor the reaction represented by the equation:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{L}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$
at $460^{\circ} \mathrm{C}$, if a 2.00 L vessel contans an equillirium mxxture of 0.0860 mol of $\mathrm{H}_{2}, 0.124$ mol
of I_{2} and 0.716 mol of Hl .
Solution
$\left[H_{2}=\frac{\eta\left(H_{2}\right)}{V\left(H_{2}\right)}=\frac{0.0860}{2.00}=0.0430 \mathrm{M}\right.$
[प्2] $=\frac{0.124}{2.00}=0.0620 \mathrm{M}$
[H] $=\frac{0.716}{2.00}=0.358 \mathrm{M}$
$K=\frac{[H]^{2}}{\left.H 2[]_{2}\right]}=\frac{0.358^{2}}{0.0430 \times 0.0620}=48.1$
The equullbrium constant has a value of 48.1. Note that in this example the constant has no unts as the number of particles in the numerator and denominator of the concentration traction are equal.)

Handss stoweat trat 0.1400 mol of SO , was present in the gas moture at equilectum
solution

at equilblume
$\begin{array}{ll}102) & =0.01000+0.0500=0.0660 \mathrm{~mol} \\ 20.0\end{array}$
$n(0)=0.0 .0500+0$
$n \$ 0,0=0.1400 \mathrm{~mol}$
$[50]=,\frac{n(50)\}}{n S O)}=\frac{0.000}{2.000}=0.0300 \mathrm{M}$
$[0,7]=\frac{0.0150}{200}=0.00750 \mathrm{M}$
$[50]=,\frac{0.1400}{200}=0.0700 \mathrm{M}$
$K=\frac{\mid s 0,]^{2}}{\operatorname{son})^{1}, 0, j}$
$=\frac{0.0700^{2}}{00000^{2} \times 0.00750}=726 \mathrm{M}$
The equilutum onstant inse avave of 728 M .

Worked example 16.2 b

he equillorium constant for the reaction described by the equation
$\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
Is 4.5 M at 80°. In an equillbrium mixture at thlis temperature, what is the concentration of
NO_{2} If the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is 0.0012 M ?
Solution

$$
K=\frac{\left[\mathrm{NO}_{2}{ }^{2}\right.}{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]}=4.5
$$

Therefore $\frac{\left[\mathrm{NO}_{2}\right]^{2}}{0.0012}=4.5$
$\left[\mathrm{NO} \mathrm{O}_{2}\right]^{2}=4.5 \times 0.0012=0.0054$
Taking the square root of both sides $\left[\mathrm{NO}_{2}\right]=\sqrt{0.0054}=0.073$
The concentration of NO, in the equillorium mixure is 0.073 M
Worked example 16.2d
The equillibrum constant for the reaction $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$ is 4.5 M at $80^{\circ} \mathrm{C}$. A gas mixture in a 2.0 L vessel at $80^{\circ} \mathrm{C}$ contalined 0.20 mol of $\mathrm{N}_{2} 2_{4}$ and 0.30 mol of NN_{2}. Decide if the reaction is at equllilbrium and, if it is not, predict the direction the reaction will shift to reach equillbrium.
Solution
$\left[N_{2} \mathrm{O}_{4}\right]=\frac{n\left(N_{2} 0_{0}\right)}{V\left(N_{2} 0_{d}\right)}=\frac{0.20}{2.0}=0.10 \mathrm{~mol}$
$\left[\mathrm{NO}_{2}\right]=\frac{n\left(\mathrm{NO}_{2}\right)}{V\left(\mathrm{NO}_{2}\right)}=\frac{0.30}{2.0}=0.15 \mathrm{~mol}$
The reaction quotient $\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]}=\frac{0.0225}{0.10}=0.23 \mathrm{M}$ Since the reaction quotlent|s not equal to K, the reaction I n not In equillbrium. For anequillbrium
to be established and the reaction quotiento equal K, the concentration of NO_{2} must Increase and the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ must decrease,, .e. a net forward reaction will $\mathbf{2}$ ccur

Changing the equilibrium position of a reaction

1. Adding or removing a reactant or product

Consider $\quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}$
momentarily
As $\mathrm{N} 2 \uparrow \Rightarrow$ forward reaction $\uparrow \Rightarrow \uparrow \mathrm{NH} 3$
As $\mathrm{NH} 3 \uparrow, \mathrm{~N} 2$ and H 2 back reaction \uparrow
Itimately, forward and back reactions become equal again and a new equilibrium is reached where concentrations of all the substances have changed
The overall effect is a net forward reaction

1. Adding or removing a reactant or product
2. Changing the pressure by changing the volume where gases are involved
3. Dilution where solutions are involved
4. Changing the temperature

Le Chatelier's Principle

If a change is imposed on a system at equilibrium, the system will adjust itself to partially oppose the effect of the change."
The equilibrium will never completely return to its original state, but it will tend to oppose the effect.

This principle can be used to predict the consequences of adding substances to, or removing substances from an equilibrium mixture.

2. Changing the pressure

a. By changing volum

Gas pressure can be changed by increasing or decreasing the volume of the container while keeping temperature constant.
Example 16.3a

3. Dilution

Effect of dilution by adding water is the same as changing the volume in gaseous equilibria.
Where possible, a net reaction occurs in the direction that produces the greater number of particles
e.g. $\mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{SCN}^{-}(\mathrm{aq}) \rightleftharpoons \mathrm{Fe}(\mathrm{SCN})^{2+}(\mathrm{aq})$

2 particles in solution $\quad 1$ particle in solution

changing container volume) such as helium, neon or argon.
In this case, because the concentration of the reactants does not change, there is not change in the equilibrium (no net forward or back reaction)

Example 16.3b

\square
${ }_{x \rightarrow 0,4} \rightleftharpoons$ Me,

4. Changing the temperature

$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$ is an exothermic reaction
Heating such a reaction will cause it to try to remove energy by a net back reaction.

An increase in temperature in an equilibrium mixture results in:

A net backward reaction (less products) for exothermic reactions

- A net forward reaction (more products) for endothermic reactions.

Do all reactions reach equilibrium?

Production of lime
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$

Reactions considered as continuing:

- where products are gases which escape the reaction mixture.
- where reactants are in minute quantities.

Extension

Carbon dioxide transport
Carbon dloxide is produced by cells during respiration. An equillibrium between carbon dioxide gas and dissolved carbon dioxide is established.
$\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{aq})$
The relatively high concentration of carbon diloxide gas drives this reaction forward. Th forward reaction is assisted by reaction of dissolved carbon dioxide with water:
$\mathrm{CO}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCO}_{3}^{-}(\mathrm{aq})$
In this sequence of reactions, carbon diloxide forms carbonic acid, a weak acid, which in turn is in equillibrium with the hydrogen carbonate lon. Almost 95 per cent of carbo dioxide is transported back to the lungs as HCO_{3}
In the lungs, the low concentration of carbon dioxide gas in air causes these reactions to occur in reverse, releasing the carbon dioxide gas, which is exhaled.

arbon monoxide poisoning

 Carbon monoxide is a colourless, odourless and tasteless gas present in clgarettesmoke and in the exhaust gases from car engines. It forms when carbon or carbon compounds burn In a limited supply of alr. It is toxic because, Ilke oxygen, It reacts with haemoglobin:
haemoglobin + carbon monoxide \rightleftharpoons carboxyhaemoglobin
Carbon monoxide bonds much more strongly to the haemoglobin molecule than does xxgen. The equllibrium constant for thls reaction is nearly 20000 times greater than ro the reaction between oxygen and haemoglobin. Even small concentrations of carbon monoxide cause the position of equillbrium to go well to the right.
This has a critical effect on the equillbrium between haemoglobin and oxygen:

$$
\text { haemoglobin + oxygen } \rightleftharpoons \text { oxyhaemoglobin }
$$ When carbon monoxdde is avalable, the formation of carboxyhaeemoglobin reduces the

oncentration of haemogoglobin. This in turn causes the back reaction of oxyhhemogogobin. n extreme cases almost no oxyhaemoglobin is left in the blood and 'carbon monoxide polsoning' cccurs.Symptomsof carbon monoxxdee polsoning Includedrowsiness, dizZiness, death can result from carbon monoxide concentrations as low as 200 ppm.
competing equilibria, the equilibrium with the higher K has a significant effect on the equilibrium of the other


```
Neyquctions C
```



```
    a,
```



```
    a machequiblutum, tove equllorum(
    asmiton of SO, to the equllotrum
    O renoal (f CH,C00- trom the equllotrum,
        CH,COOH(\otimes) +H,O(I) \rightleftharpoons
        C3,COOH(x) + +HO(I) Ш-(aq) +CH,COO(x)
    c. naving the wumme dowoling the pressur) of the
        equllmum:
        N2(&)+3\mp@subsup{H}{2}{(k)}\rightleftharpoons2\mp@subsup{\textrm{NH}}{2}{}(\textrm{l})
    O noreasmg the messure on the equilmuin
        H2(&)+\mp@subsup{L}{2}{(\Omega)}\rightleftharpoons2HH(\Omega)
        11 Cossar, tre taloumg equibra,
        CH2(Q+CO,(Q) \rightleftharpoonsH2O(Q+COO|/ 
        |\N,0,(g) \
```



```
    produce ne: flomerd reacti
```



```
        N2,O(l) \rightleftharpoons2NO,(l)
        The voumea ctecontamer was incresecat constant
        Mempermuve nod a new vequttrum wsesstablumede. Preact
```



```
    MancontabmaN
```


,
$\mathrm{N}_{2}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{s})$
22 Constlder the reaction:
$\quad \mathrm{A}+3 \mathrm{~B} \rightleftharpoons 2 \mathrm{C}+\mathrm{D}$
Anaysis of an equillibrum mxxure in a 2.0 L contaner shows
nayssl of anequinnum mxure in 2.0 L contaner shous
27 Carbon monoxide is used as a tuel in many industries.
It reacts according to the equation:
It the equilibrium onstant of the reaction $15.0244 \mathrm{M}^{-1}$
It the equilibrium oonstant of the reaction is 0.024
calculate:
a the concentrataton of A, B and D at equillorrum
a the concentration of A, B and D at equillibrum
b the concentratoon of $\mathrm{C} I \mathrm{I}$ the equillibrum maxture
C the amount of C , in mol, in the equillorium mxxure
Changing the equilibrium position
24 How will the concentration of thycrogen gas in each of the
ha study of this exothermic reaction, an equillbrium system is
How will the concentration of hydrogen gas in each of the
following equillorum mxxures change when the mxxtures are
heated and kept at constant volume?

25 The following equations representrit reactlons that are Important

In industrial processess. Predict the effect on the equillitium
temperature.

$\mathrm{bCO}(9)+2 \mathrm{H}_{2}(9) \rightleftharpoons \mathrm{CH}, \mathrm{OH}(\mathrm{H}$
c $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(\theta) \rightleftharpoons 2 \mathrm{NO}(g)$

30 Ethene gas is produced from ethane gas In an endothermic

 reaction represented by the equation:$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \rightleftharpoons \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}_{=+138} \mathrm{~kJ} \mathrm{~mol}^{-}$
a copy the table below and place a tick In the appropilate box to indlicate what will happen to the equillibrium percentage yleld of ethene when each of the following changes is made.

\section*{| $\begin{array}{l}\text { Increased } \\ \text { ethene yeld }\end{array}$ | $\begin{array}{l}\text { No change in } \\ \text { ethene yild }\end{array}$ | $\begin{array}{l}\text { Decreased } \\ \text { ethene yuld }\end{array}$ |
| :--- | :--- | :--- |}

I The volume is reduced at constant temperature II More hydrogen gas is acded at constant temperatur and volume.
III The temperature is increased at constant volume.
Iv A catayst Is added.
v Argon gas is added at constant temperature and volume.
How will each of the changes in parta affect the rate at which the reaction achieves equllibrium?

