## Week 9 Equilibria Involving Acids \& Bases

## Self-ionisation of water

Through reaction with itself:
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq})$
At equilibrium, $K=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}^{2}\right.}$.
The concentration of water in aqueous solutions is virtually constant at about 56 M , thus:
$\left[\mathrm{H}_{3} \mathrm{O}^{+}[1 \mathrm{OH}]=K \times\left[\mathrm{H}_{2} \mathrm{O}\right]^{2}=\mathrm{a}\right.$ constan
This expression can also be written as
$K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}+[\mathrm{OH}]\right.$
$K_{w}$ is called the ionisation constant of water.

In pure water at $25^{\circ} \mathrm{C}$, the concentration of both Therefore, the value of $K_{\mathrm{w}}$ at $25^{\circ} \mathrm{C}$ can be calculated:
$K_{w}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-7} \times 10^{-7}=1.0 \times 10^{-14} \mathrm{M}^{2}$

## Acidic and basic solutions

In acidic solutions, $\mathrm{H}_{3} \mathrm{O}$ ions are formed by reaction with the acid with water as well as self-ionisation of water.
The concentration of $\mathrm{H}_{3} \mathrm{O}^{+}$ions will be greater than $10^{-7} \mathrm{M}$ at $25^{\circ} \mathrm{C}$.
Since the product $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$remains constant, the concentration of OH ons in an acidic solution must be less than $10^{-7} \mathrm{M}$ at $25^{\circ} \mathrm{C}$
The opposite is true for basic solutions.
In summary, at $25^{\circ} \mathrm{C}$ :

- in pure water and neutral solutions: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$
- in acidic solutions: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]>10^{-7} \mathrm{M}$ and and $\left[\mathrm{OH}^{-}\right]<10^{-7} \mathrm{M}$
- in basic solutions: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]<10^{-7} \mathrm{M}$ and $\left[\mathrm{OH}^{-}\right]>10^{-7} \mathrm{M}$


## pH : a convenient way to measure acidity

Worked example 17.1a

Solution
$=10^{-1 /}=4.0 \times 10^{-3} \mathrm{M}$ (using a calculator)
The concentration of $t_{3}+$ tons in in blood is $4.0 \times 10^{-8} \mathrm{~N}$
Worked example 17.1b


Solution
nted by the exustion
$\mathrm{HC}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightleftharpoons \mathrm{NaCl(aq)}+\mathrm{H}, \mathrm{O}(\mathrm{O})$


MTBGOH $=0.100 \times 0.02000=0.00200 \mathrm{mo}$


abture $540.0+20.0 \mathrm{~mL}=60.0 \mathrm{~mL}$

$=\frac{0.006 \mathrm{mll}}{0.060 \mathrm{~L}}=0.100 \mathrm{M}$
So, $\mathrm{pH}=-\mathrm{bog}_{10} 0.100=1.00$

## How is pH affected by temperature?

The ionisation constant for water is
$K_{\mathrm{v}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-14} \mathrm{M}^{2}$ at $25^{\circ} \mathrm{C}$
We can use this relationship to calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$or $\left[\mathrm{OH}^{-}\right]$at $25^{\circ} \mathrm{C}$ But what about at other temperatures?

The self-ionisation reaction for water is endothermic
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) ; \Delta H=+57 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Therefore, as $T^{\circ}$ increases, the forward reaction will be favoured.
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$and $\left[\mathrm{OH}^{-}\right]$increase causing $K$ to rise and pH to decrease.

If $T^{\circ}$ decreases, the position of the equilibrium favours the back reaction, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right],\left[\mathrm{OH}^{-}\right]$and $K_{\mathrm{w}}$ all decrease, causing pH to increase.


## Acidity Constants

Most acid-base reactions in water can be considered as equilibrium reactions e.g. HCl ionises in water thus:
$\mathrm{HCl}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CF}(\mathrm{aq})$
The equilibrium constant can be expressed as:
$K=\frac{\left[\mathrm{H}_{3} \mathrm{O}\right][\mathrm{Cl}]}{[\mathrm{HCl}]\left[\mathrm{H}_{2} \mathrm{O}\right]}$
Since the concentration of the solvent water is virtually constant, we can
write thus
${ }_{K}\left[\mathrm{H}_{2} \mathrm{O}\right]=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right][\mathrm{Cl}]}{[\mathrm{HCl}]}=K_{d}$
The quantity $K$ is known as the acidity constant.
The $K_{\mathrm{a}}$ of HCl is $10^{7} \mathrm{M}$ at $25^{\circ} \mathrm{C}$
This means that in HCl solutions, most of the acid is converted to $\mathrm{H}_{3} \mathrm{O}^{+}$and $\mathrm{Cl}^{-}$ This is why HCl is classed as a strong acid.

By contrast, the $K_{\mathrm{a}}$ of ethanoic acid is $1.75 \times 10^{-5} \mathrm{M}$ at $25^{\circ} \mathrm{C}$
The $K_{\mathrm{a}}$ can be used as a measure of an acid's strength.
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}-(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
$K=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}-1\right.}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right] \mathrm{H}_{3} \mathrm{O}}$
TABLE $17.2 K_{\text {a }}$ values for some
$\left[\mathrm{CH}_{3} \mathrm{COOH} \mathrm{CH}_{3}\left[\mathrm{H}_{2} \mathrm{O}\right]\right.$
$K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\right.}{\left[\mathrm{CH}_{3} \mathrm{COOH}^{2}\right]}$
n ethanoic solutions, the position of the equilibrium favours the reactants and there is relatively small amount of products.

Actd

Ethanoic acid is classed as a weak acid because at equilibrium only a small proportion of the acid has been ionised.

In the case of the polyprotic acids citric acld, phosphoric acld and sulfuric acld, the $K_{\text {, }}$ value quoted involves the loss of the first proton.

Calculations involving acidity constants
The following example shows how an acidity constant can be used to
calculate the pH of a solution of a weak acid.
Worked example 17.2
Calculate the ph and percentlage tyydroysis of 0.50 M ethanolc acid soltiton, glven that the
${ }^{\text {Calculate the phe and percentage flyd }} \mathrm{K}_{\mathrm{s}}$ to
Solution
The equation for the lonisation of ethanolc acla is:
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}-(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}=1.75 \times 10^{-5} \mathrm{M}$
From the equalion tor the reaction we can see that tor every mole of ethanolc acdd that tonlses.
one mole of $H_{3}+$ and one mole of $\mathrm{CH} \mathrm{H}_{3} \mathrm{CO}-$ will be formed. So we can sa
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{CH}_{3} \mathrm{COO}_{-}\right]$
II we substitute this int the expression for $k$, we get $\left[\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]^{2}}{[\mathrm{COOO}}\right.$
$=1.75 \times 10^{-5} \mathrm{M}$
We aso know fom the equation tor the reaction that in a 0.50 M solution of ethanolc acle $[\mathrm{CH}, \mathrm{COOH}]+\mid \mathrm{CH}_{2}, \mathrm{COO}-=0.50 \mathrm{M}$

However, ethanolc acd Is s weak acd with a very small $K$, so we know It will only lonsse to a
 re,
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.50 \mathrm{M}$
If we substitute this into the revsed expression tor $K_{2}$, we get
$\frac{\left.\left[\mathrm{H}_{3} \mathrm{O}\right]^{2}\right]^{2}}{0.50 \mathrm{M}}=1.75 \times 10^{-5} \mathrm{M}$
$H_{3} 0^{++7^{2}}=8.75 \times 10^{-6}$

pH $=-\log [2.96 \times 10-9]=2.5$
We can measire the extent of the reaction by calculating the percentage hydrolysis or
percentage lonisa
$\mathrm{CH}_{3} \mathrm{COOH} \times 100=\frac{2.96 \times 10^{-3}}{6100}$
$=0.59 \%$
Thls means stat In a 0.50 M solution Just sx in every thousand $\mathrm{CHH}_{3} \mathbf{C O O H}$ moleccles are
hydrolysed at any instant-no wonder it's casasfifed as a weak acdal
These ideas can be generalised to solutions of any weak acid represented by
HA:
$\mathrm{HA}_{(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{f}) \rightleftharpoons_{\mathrm{A}-(\mathrm{aq})+\mathrm{H}_{\mathrm{O}} \mathrm{O}^{+}(\mathrm{aq})}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{A}]$ and $[\mathrm{HA}]$ does not change during the ionisation (hydrolysis).

## Buffers: Using equilibrium to resist change

Buffers are solutions that can absorb the addition of acids or bases with little change of pH . They are most easily made by mixing a weak acid and a salt of its conjugate base e.g. ethanoic acid and sodium ethanoate:
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$
The important feature of this solution is that it contains significant amounts of both the weak acid and its conjugate base.
If a strong acid such as HCl is added to the equilibrium mixture of ethanoic acid/ethanoate ion, the pH will decrease, but much less than expected. Le Chatelier's Principle is followed and the system will oppose the change and restore equilibrium.
The addition of $\mathrm{H}_{3} \mathrm{O}^{+}$causes a net back reaction.
The addition of a strong base consumes $\mathrm{H}_{3} \mathrm{O}^{+}$, causing a net forward
reaction.
n both cases the overall effect on $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is small so the change in pH is minimal.
$\mathrm{HA} \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+$ stays roughy
contant tecause
 akemorert(a)

Figure 17.5
How the equilibium between a weak add,
HA, and its onjuyade bases, $A-$ keeps the $p H$
$\stackrel{H A, \text { and }}{\text { constant }}$

Buffers are very important in biological systems where they help maintain delicate chemical processes essential to life

## pH in the body

Blood is maintained within a narrow ph band of $7.35-7.45$
Illnesses such as pneumonia and emphysema can lower this value to potentially lethal levels.
Hyperventilation can raise pH .


Buffers maintain pH within limits in the body.
One of the important buffers is made up from carbonic acid and the hydrogen carbonate ion.
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightleftharpoons \mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$

- If $\mathrm{H}_{3} \mathrm{O}^{+}$ions are added, a net back reaction occurs, removing these ions.
- If $\mathrm{OH}^{-}$ions are added they react with $\mathrm{H}_{3} \mathrm{O}^{+}$ions and a net forward reaction occurs.



## Acidity constants

16 A 0.100 M solution of hypolodous acid (HOI) has a pH of 5.8
Write an equation for the lonisation of hypoiodous acid.
Calculate $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$in the solution.
17 A student Investigating an equillibrium mixture produced by reacting methanoic acid ( HCOOH ) and water finds that the H of the solution is 2.4 and the concentration of HCOOH 0.10 M . Calculate the $\mathrm{K}_{\mathrm{a}}$ of methanoic acid.

## The Contact Process for Sulfuric Acid

Step 1: Burning sulfur
$\mathrm{SO}_{2}$ (from various sources) $\rightarrow \mathrm{SO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$
Molten sulfur is sprayed under pressure into a furnace where it burns in air to produce $\mathrm{SO}_{2}$ gas.
$\mathrm{S}(\mathrm{I})+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) ; \quad \Delta H=-297 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Temperatures may reach $1000^{\circ} \mathrm{C}$. The gas is cooled for the next step

## Step 2: Catalytic oxidation of sulfur dioxide

Using vanadium (V) as a catalyst:
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) ; \Delta \mathrm{H}=-197 \mathrm{~kJ} \mathrm{~mol}^{-1}$

- Performed in a reaction vessel called a converte

Gas stream is passed through a series of trays containing loosely packed porous pellets of catalyst.
The reaction is exothermic and cooling is necessary (reaction maintained The reaction is exothermic and
at $400-500^{\circ} \mathrm{C}$ and 101 kPa .

- Nearly $100 \%$ conversion is achieved.


## Le Chatelier's Principle complied with

Equilibrium yield of $\mathrm{SO}_{3}$ will increase:

## Step 3: Absorption of $\mathrm{SO}_{3}$

- Since the reaction is exothermic, as $\mathrm{T}^{\circ}$ decreases, the system will compensate for the reduction by favouring the forward reaction which releases energy.
- The system reacts to high pressure by favouring the forward direction because this will reduce pressure.

Catalyst
A conflict exists because a high equilibrium yield is favoured by low $\mathrm{T}^{\circ}$ whereas as fast rate of production is favoured by high T .

By using a catalyst it is possible to use lower To and still achieve acceptable reaction rates

$\mathrm{SO} 3(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq}) ; \Delta H=-130 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Direct absorption in water is not used because of the heat evolved
Instead, $\mathrm{SO}_{3}$ is passed into concentrated H 2 SO 4 in an absorption tower. A two step reaction occurs:
$\mathrm{SO}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}(\mathrm{I})$ (this is oleum)
$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow 2 \mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{I})$
The sulfur dioxdce gas used as the raw materia tor
The sulfur dioxdce gas used as the raw materia tor
nanufacturring sulturic acdd can come from elther sultur
nanufacturring sulturic acdd can come from elther sultur
extracted from processing fossil fuels or from smelting metar
extracted from processing fossil fuels or from smelting metar
ores. Write balanced equatons for the prod smation of sur
ores. Write balanced equatons for the prod smation of sur
diloxde from:
diloxde from:
elemental sulutur
elemental sulutur
b smelting Iron(I) sulfide
b smelting Iron(I) sulfide
In the commercal production of sulturic acld. Sultur diloxde
In the commercal production of sulturic acld. Sultur diloxde
oxdilsed to sulturu trioxdce by oxygen gas
oxdilsed to sulturu trioxdce by oxygen gas
a Write a balanced chemical equation for the reaction
a Write a balanced chemical equation for the reaction
Wirte an expression for the equillorium constant tor tit
Wirte an expression for the equillorium constant tor tit
Predict the reaction ondiltions that would favour maximum
Predict the reaction ondiltions that would favour maximum
equillibium yleld of sulfur triox do. Explal your reasoning
How would these condtions aftect the rate of reacton?
equillibium yleld of sulfur triox do. Explal your reasoning
How would these condtions aftect the rate of reacton?

- Athough water reacts directiy with sultur trioxde to form
- Athough water reacts directiy with sultur trioxde to form
sulfuric acld, this reaction is not employed when sulturic aci
sulfuric acld, this reaction is not employed when sulturic aci
s made.
s made.
Is made.
a
a Explan why not.
Is made.
a
a Explan why not.
Describe the process that is used.
Describe the process that is used.
Write equations tor the reacilons ina occur in the process
Write equations tor the reacilons ina occur in the process
described in part b above.
described in part b above.

