### **Kinetics of Microbial Growth**

### **Unlimited growth**

Assuming  $t_{\rm d}$  = 0.33 h,

in 48 h,

one cell would become

2.33 X 10<sup>43</sup> cells

If a cell weighs  $10^{-12}$  g, then the total would be

2.23 X 10<sup>31</sup> g

### This would be 4000 times the weight of the earth!

Dr. Clem Kuek

ZIP/Lect+Prac/IndusMicrobiol/Lectures/GrowthKinetics.doc

# Factors Determining Growth & Synthesis of Products

### Absolute Factors

Nutrients; pH; Temperature; Oxygen

### • Rate-Determining Factors

Temperature; pH; Mass Transfer; Energy Transfer

#### Dr. Clem Kuek

ZIP/Lect+Prac/IndusMicrobiol/Lectures/GrowthKinetics.doc

## Kinetics of Batch Culture

### Growth Rate, $r_x$

 $= \frac{\Delta \mathbf{x}}{\Delta t}$ or as *t* becomes infinitesimally small  $= \frac{d\mathbf{x}}{dt} \qquad \text{Units e.g. g cells mL}^{-1}h^{-1}$ **Specific Growth Rate, \boldsymbol{\mu}**  $= \frac{\mathbf{r}_{\mathbf{x}}}{\mathbf{x}} \qquad \text{Units e.g. g g}^{-1} \text{ cells mL}^{-1}h^{-1}$ 

#### Kinetics of Batch Culture 2

#### Phases of growth in batch culture



1

2

#### **Kinetics of Batch Culture 3**



#### Kinetics of Batch Culture 4

Integrating equation 2.1 gives



where

- $x_o$  = [original biomass]  $x_t$  = [biomass after time t]
- $x_t$  = [biomass after time e = base of natural log

.. . .. ..

Taking natural log, equation 2.2 becomes

$$\ln x_t = \ln x_0 + \mu t$$

Thus, plot of ln X vs. t gives straight line in the exponential phase, slope of which =  $\mu$ Dr. Clem Kuek ZIP/Lect+Prac/IndusMicrobiol/Lectures/GrowthKinetics.doc



### Determining $r_{\chi}$ from data

| Time | X                    | S                    |
|------|----------------------|----------------------|
| (h)  | (g L <sup>-1</sup> ) | (g L <sup>-1</sup> ) |
| 0    | 0.100                | 40.00                |
| 1    | 0.134                | 39.93                |
| 2    | 0.180                | 39.83                |
| 3    | 0.241                | 39.70                |
| 4    | 0.323                | 39.50                |
| 5    | 0.433                | 39.30                |
| 6    | 0.581                | 38.97                |
| 7    | 0.778                | 38.50                |
| 8    | 1.040                | 38.00                |
| 9    | 1.400                | 37.20                |
| 10   | 1.870                | 36.20                |
| 11   | 2.500                | 34.80                |
| 12   | 3.350                | 32.90                |
| 13   | 4.490                | 30.50                |
| 14   | 6.000                | 27.20                |
| 15   | 8.000                | 22.80                |
| 16   | 10.70                | 17.10                |
| 17   | 14.10                | 9.60                 |
| 18   | 17.90                | 1.11                 |
| 19   | 17.90                | 1.11                 |
| 20   | 17.90                | 1.11                 |

#### Determining $r_x$ from data 2

Growth Rate,  $r_x$ 

1. Hand-drawn tangent

$$r_x = \frac{y}{x}$$

2. Numerical differentiation Difference between values on either side of data point

 $\mathbf{r}_{\mathbf{X}_{2}} = \frac{\mathbf{X}_{3} - \mathbf{X}_{1}}{\mathbf{t}_{3} - \mathbf{t}_{1}}$ 

3. Curve fitting  $\mathbf{r}_{\mathbf{X},2} = \left[\frac{\ln \mathbf{x}_{3} - \ln \mathbf{x}_{4}}{t_{3} - t_{4}}\right] \cdot \mathbf{x}_{2}$ 

## Determining $oldsymbol{\mu}$ from data

Using the values for growth determined as described previously, Specific Growth Rate may be estimated by the relationship



## Determining $\mu_{max}$ from data

1. By tabulation of values for  $\mu$  through the exponential phase of the culture.

| Time (b) | x                    | $r_x$               | $\mu = r_x/x$ |    |
|----------|----------------------|---------------------|---------------|----|
| (1)      | (g L. <sub>1</sub> ) | (h <sup>-1</sup> )* | • *           |    |
| 0        | 0.100                | -                   | -             | 1  |
| 1        | 0.134                | 0.040               | 0.298         | 1  |
| 2        | 0.180                | 0.054               | 0.300         | ]+ |
| 3        | 0.241                | 0.072               | 0.299         | 1  |
| 4        | 0.323                | 0.096               | 0.297         | ]  |
| 5        | 0.433                | 0.129               | 0.298         | 1  |
| 6        | 0.581                | 0.172               | 0.296         | ]  |
| 7        | 0.778                | 0.230               | 0.296         | ]  |
| 8        | 1.040                | 0.311               | 0.299         | ]  |
| 9        | 1.400                | 0.415               | 0.296         | 1  |
| 10       | 1.870                | 0.550               | 0.294         | 1  |
| 11       | 2.500                | 0.740               | 0.296         | ]  |
| 12       | 3.350                | 0.995               | 0.297         |    |
| 13       | 4.490                | 1.325               | 0.295         | 1  |
| 14       | 6.000                | 1.755               | 0.293         | 1  |
| 15       | 8.000                | 2.350               | 0.294         | ]  |
| 16       | 10.70                | 3.050               | 0.285         | 1  |
| 17       | 14.10                | 3.600               | 0.255         | 1  |

Dr. Clem Kuek

Dr. Clem Kuek

ZIP/Lect+Prac/IndusMicrobiol/Lectures/GrowthKinetics.doc

#### 10

#### Determining ${oldsymbol \mu}_{max}$ from data 2

2. Lineweaver-Burke plot

$$r_{*} = \frac{dx}{dt}$$
$$= \frac{\mu \cdot S \cdot x}{K + S}$$
$$\frac{r_{*}}{x} = \frac{\mu \cdot S}{K + S}$$

Taking the reciprocal and since  $\frac{r_x}{r} = 1$ 

$$\frac{x}{r_{\star}} = \frac{1}{\mu} = \frac{K_{\star} + S}{\mu_{\star} \cdot S}$$
$$= \frac{K_{\star}1}{\mu_{\star} \cdot S} + \frac{S}{\mu_{\star} \cdot S}$$
$$= \frac{K_{\star}}{\mu_{\star}} \cdot \frac{1}{S} + \frac{1}{\mu_{\star}}$$

#### ZIP/Lect+Prac/IndusMicrobiol/Lectures/GrowthKinetics.doc

Compare  $\frac{1}{\mu} = \frac{K_s}{\mu_*} \cdot \frac{1}{S} + \frac{1}{\mu_*}$  with y = mx + c

Determining  $\mu_{max}$  from data 3





Dr. Clem Kuek

### Yield factor Y

- *Y* = the ratio of product or cell quantity resulting from a certain quantity of input
- e.g.  $Y_{x/s}$  Yield of cell weight per unit weight substrate utilized  $Y_{p/n}$  Yield of product weight per unit weight of nitrogen utilized

Determination of Yield Factor on carbon substrate,  $Y_{x/s}$ 



| where       | $r_s$ | = rate of consumption of carbon substrate                |  |
|-------------|-------|----------------------------------------------------------|--|
|             | $m_s$ | = maintenance coefficient on carbon substrate            |  |
| Dr. Clem Ku | Jek   | ZIP/Lect+Prac/IndusMicrobiol/Lectures/GrowthKinetics.doc |  |

# The Importance of $\mu_{max}$

For processes where maximal growth rates are diserable, attainment of  $\mu_{max}$  in culture is important.

### Since $\mu_{max}$ is determined by the

- genetics of the microorganism
- conditions of culture

Attainment of  $\mu_{max}$  has implications for both determinants.

# For other processes, identification of $\mu_{max}$ is important so that it can be avoided

e.g. in the production of secondary metabolites.

#### Determination of Yield Factor on carbon substrate, $Y_{x/s}$ 2

Thus, when  $\frac{\Gamma_s}{X}$  is plotted against  $\frac{\Gamma_x}{x}$  , we get



### The Importance of the Yield Factor Y

*Y* indicates the degree of efficiency of the conversion of substrates into desired products.

Attainment of efficient *Y* translates directly into economic efficiency, and thus productivity.

### Since *Y* is determined by the

- genetics of the microorganism
- conditions of culture
- nature of the input (substrate)

Attainment of an efficient *Y* has implications for the determinants.

15

13

Dr. Clem Kuek

14