Resources for biosynthesis: Assimilation

Degradation of large molecules

Degradation of carbohydrates Degradation of proteins Degradation of lipids

- Structure of the cytoplasmic membrane *a.k.a* the plasma membrane
- Transportation of nutrients into cell

Nutrients and metabolism

Metabolism needs inputs of "nutrients"

- \circ for assimilation into cellular components
- \circ generation of energy if heterotrophic <u>not</u> assimilation
- \circ lithotrophs inorganic 'nutrients' for energy

• Not all nutrients are used by all bacteria, because of

ZIP\Lect\MP&G\Metabolism2

- \circ too large molecular size to enter cell without degradation
- $\,\circ\,$ lack of metabolic apparatus, or, "pathways", to absorb nutrients
- \circ lack of metabolic pathways to utilise nutrient in cell

Passage of nutrients depends on

- \circ exoenzymes, transfer enzymes
- o plasma membrane structure
- \circ energy

Dr. Clem Kuek

o Genetic code determines pathways

1

Dr. Clem Kuek

ZIP\Lect\MP&G\Metabolism2

Degrading large molecules

Only small molecules can enter cell

• Large molecules need to be degraded by exoenzymes

- $_{\odot}$ excreted into periplasm of cell wall
- $\circ\,$ evolved as response to need for microbial decomposition of plants, animals and other organisms
- \circ useful in industry see industrial microbiology

Degradation of polysaccharides

- Polysaccharides: polymers of monosaccharides
- Various bond links in polymer *e.g.* Starch
 - \circ amylose Linear with α -1,4-glucosidic bonds
 - \circ amylopectin branched with α -1,6-glucosidic bonds

Glycogen

 α -1,4 and α -1,6-glucosidic bonds

Cellulose

 β -1,4-glucosidic bonds

- Determines the type of hydrolytic excenzyme required
- e.g. for α -1,4-glucosidic bonds: α -amylase for β -1,4-glucosidic bonds: cellulase

2

Degradation of polysaccharides 2

Degradation

Polymer > oligomer > monomer e.g. Starch > dextrins > glucose or cellulose > cellobiose > glucose

Final products include:

- o disaccharides (maltose, sucrose, lactose)
- o monosaccharides (glucose, fructose)

Phosphorolysis

 $\,\circ\,$ addition of P_i to end unit as it is lysed from the polymer

Dr. Clem Kuek

ZIP\Lect\MP&G\Metabolism2

Degradation of lipids

- Fats, lipids, triglycerides degraded by lipases
- Different lipases hydrolyse different ester bonds

 Fats (esters of glycerol and fatty acids): Hydrolysed by lipases
 Phospholipids: Hydrolysed by phospholipases A, B, C and D
- Glycerol and fatty acids transported into cell
- o Glycerol enters glycolysis pathway
- \circ Through $\beta\text{-}oxidation,$ fatty acids oxidized to acetyl-CoA

Degradation of proteins

Proteins are polymers of amino acids

e.g. casein, gelatine

 Proteases hydrolyse the peptide bond between amino acids

outside cell - exoenzymes inside cell to degrade unstable proteins

- **Exopeptidases** remove single amino acid from end of protein chain
- Endopeptidases break peptide bonds at any position in protein >>> polypeptides, peptides, amino acids

Amino acids are transported into cell for

oxidation incorporation into proteins intracellularly

Dr. Clem Kuek

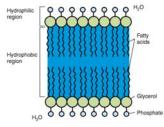
5

ZIP\Lect\MP&G\Metabolism2

6

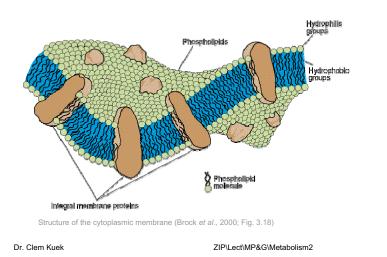
Structure of the cytoplasmic membrane

• Cell wall and cytoplasmic membrane form a barrier


- o peptidoglycan and other compounds cross-linked in wall
- » porins allow hydrophilic, low MW molecules through
- not attacked by excenzymes

The cytoplasmic membrane is a phospholipid bilayer

- hydrophilic region outside (phosphate)
 in contact with exoenzymes and
- binding proteins


Dr. Clem Kuek

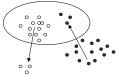
 hydrophobic region inside (fatty acids)
 in contact with cytoplasmic proteins/ enzymes

7

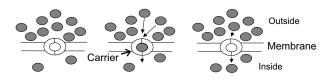
- Proteins embedded in membrane
- $\ensuremath{\circ}$ integral membrane proteins membrane transport proteins

Transportation of nutrients into cell

Selective permeability of plasma membrane


 small non-polar and fat-soluble substances may pass through by dissolution
 charged and hydrophilic molecules cannot pass through without transport assistance

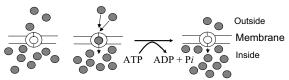
• Two types of mechanisms:


- 1. Along a concentration gradient and with no energy requirement
- 2. Against a concentration gradient and with energy requirement

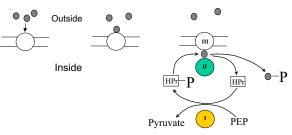
Transportation of nutrients into cell 2

- 1. Along a concentration gradient and with no energy requirement
 - a. Passive Diffusion

b. Facilitated Diffusion



Transportation of nutrients into cell 3


2. Against a concentration gradient and with energy requirement

ZIP\Lect\MP&G\Metabolism2

a. Active Transport

b. Group Translocation

9

Dr. Clem Kuek

10

Fate of assimilated nutrients

 Intermediate metal glycolytic and TCA com sugars, amino acids, fat incorporation of minerals 	ponents ty acids, purines, pyrimidines <i>etc</i>	
.	ed into f cells	
 Energy - see next lectu ATP - other 'high energy NAD - reducing power ir 		
Dr. Clem Kuek	ZIP\Lect\MP&G\Metabolism2	13