Resources for energy production Dissimilation of nutrients

- Bioenergetics: the study of energy in organisms
 - Energy flows into, through and out of cells
 - Nutrients are used to generate energy but these nutrients do not form cell components – dissimilation
- Sources of energy and its use in microorganisms
- Utilisation of redox power in microorganisms
 - Nicotinamide Adenine Dinucleotide (phosphate)
- Utilisation of high energy phosphate bonds in microorganisms
 - Adenosine TriPhosphate
 - Mechanisms to generate ATP in microorganisms
- Dr. Clem Kuek

ZIP/LECT+PRAC/MPAG/metabolism3.doc

Sources of energy for microorganisms

Cells may capture energy from external sources via

• Respiration and fermentation

- Catabolism of organic compounds: Oxidation
- Lithotrophy of inorganic compounds: Oxidation
- Photosynthesis (photophosphorylation in sunlight)

Free energy $\triangle G^{\circ}$ (KJ mole⁻¹)

- Negative $\triangle G^{\circ}$ released in exergonic reactions,
 - spontaneous, energy releasing reactions in the breakdown of bonds
 e.g. catabolism, oxidation, electron transport chains (ETCs) in respiration, lithotrophy and photophosphorylation
- Positive $\triangle G^{\circ}$ absorbed in endergonic reactions,
 - input of energy to form chemical bonds e.g. anabolism (reduction of organic compounds in biosynthesis), flagella motion, nutrient transport through plasma membranes

```
Dr. Clem Kuek
```

ZIP/LECT+PRAC/MPAG/metabolism3.doc

2

Use of energy in microorganisms

1. Cells transfer captured energy by

- phosphorylation (dehydration) of metabolites *e.g.* glucose and AMP/ADP » dehydration
- reduction of NAD/NADP → NADH + H or NADPH + H
 » during catabolism, photosynthesis, lithotrophy

2. Cell stores energy as

• ATP, ADP, "high energy" phosphorylated compounds, (storage polymers)

3. In anabolism, the cell uses energy to form organic chemical bonds by

- de-phosphorylation (hydrolysis) of ATP, ADP, "high energy" phosphorylated compounds
- oxidation of NADH + H+ or NADPH + H+ → NAD or NADP

Use of energy in microorganisms 2

4. To biosynthesize

 sugars, polysaccharides, amino acids, peptides, proteins, RNA, DNA, fatty acids, glycerol, lipids → cell components, storage compounds

3

Nicotinamide Adenine Dinucleotide (P)

- Associated with proton and electron/energy transfer during redox reactions in cell *viz.* dehydrogenation
 - Freely diffusable in cytoplasm between associated enzymes
 - Associated enzymes 'dehydrogenases'
- · Energy captured as 'reducing power' by
 - NAD⁺ → NADH + H⁺ (reduction) in catabolism, lithotrophy
 - NADP⁺ → NADPH + H⁺ in photosynthesis

Cycles between being

- reduced during oxidation of substrates during catabolism and lithotrophy, or photosynthesis
- oxidised during reduction of substrates during anabolism, or of respiratory electron transport chain components

Dr. Clem Kuek

ZIP/LECT+PRAC/MPAG/metabolism3.doc

Utilisation of high energy phosphate bonds in microorganisms: Adenosine TriPhosphate (ATP)

• Related energy storage compounds:

 $\mathsf{ATP} \longleftrightarrow \mathsf{ADP} + \mathsf{Pi} \longleftrightarrow \mathsf{AMP} + \mathsf{Pi}$

- Hydrolysis (addition of H₂O) of ATP and/or ADP in reactions transfers energy from high energy phosphate bond to
 - new organic bond
 - use in movement or nutrient transport
- Other, but not all, PO₄~lated compounds may also transfer energy in reactions
 e.g. glucose-6-phosphate

Utilisation of 'reducing power' in microorganisms

Coupled redox reactions transfer reducing power energy from

Mechanisms to generate ATP in microorganisms

Phosphorylation (addition of Pi; dehydration process)

1. Substrate Level Phosphorylation

- · Part of catabolic pathways close to internal plasma membranes
- Pre-phosphorylated organic compound is oxidised Transfer of energy as ~P
 - to AMP \rightarrow ADP or ADP \rightarrow ATP
 - directly from pre-phosphorylated organic substrate
 e.g. glycolysis and TCA cycle; fermentation
- ADP/ATP immediately available for energy transfer in anabolic reactions
 - Major source of energy from fermentation
 - Minor source of energy from glycolysis and TCA cycle

7

5

Dr. Clem Kuek

6

ns 5

ZIP/LECT+PRAC/MPAG/metabolism3.doc

12

Mechanisms to generate ATP in microorganisms 2

2. Oxidative Phosphorylation

Chemiosmotic Mechanism of ATP generation

Two structures within plasma membranes of prokaryotes; mitochondria in eukaryotes:

a. Electron Transport Chains (ETC)

(a series of respiratory or lithotrophic redox couples and their enzymes)

 transfer of H⁺ from inside membrane to outside generates proton gradient, the Proton Motive Force

b. Membrane bound ATPase (enzyme) at F_0/F_1 site

- Controlled re-entry of protons at site energises phosphorylation of ADP with Pi.
- major source of ATP from glycolysis; 1 ATP per 2 H⁺

3. Photophosphorylation

- Energy from light transferred to both NADP⁺ and ADP via electron transport chain in thylakoid membranes, attached to inside of plasma membranes of phototrophic prokaryotes (chloroplasts/ eukaryotes)
- Two types:

Dr. Clem Kuek

a. Anoxygenic (cyclic) Photophosphorylation

- found in green and purple sulphur and non-sulphur bacteria
- cyclic electron donated from component of ETC and returns to ETC
- ADP phosphorylated directly from photosynthesic ETC

Mechanisms to generate ATP in microorganisms 5

b. Oxygenic (non-cyclic) Photophosphorylation

- found in cyanobacteria and algae
- electron donated to ETC from oxidation of water, releasing O₂
 o (finally accepted by NADP and reduced to NADPH)
 o ADP phosphorylated directly from ETC of photosynthesis

Dr. Clem Kuek

ZIP/LECT+PRAC/MPAG/metabolism3.doc

13