Plant Cell Culture for the Production of Fine Chemicals

Plants and useful chemicals

- Plants have long been recognised as a source of medicinal products.
- At first large portions of plants were used but as knowledge increased, specific compounds were advocated.
- Today, there is a wide variety of pharmaceutical and other chemicals which are extracted from plants. Others are produced synthetically to mimic their natural counterparts.

Value of Some Plant Compounds (\$US) Curtin (1983)				
Compound	Use	Wholesale Price (\$US)	Market (\$US X 10 ⁶)*	
Vinblastine/Vincristine	Leukemia treatment	5000 g ⁻¹	18 - 20	
Digitalis	Heart disorders	3000 g ⁻¹	20 - 55	
Codeine	Sedative	650 kg ⁻¹	50	
Pyrethrins	Insecticide	300 kg ⁻¹	20	
Jasmine	Fragrance	5000 kg ⁻¹	0.5 (W)	
Spearmint	Flavor	30 kg-1	85 - 90	
Quinine	Antimalarial/flavor	100 kg ⁻¹	5 -10	

* Except (W): World market

Dr. Clem Kuek

Lectures/Pracs/Papers/IndusMicro/Lectures/PlantCellCUlture/pltcell.doc - 2

Dr. Clem Kuek

Lectures/Pracs/Papers/IndusMicro/Lectures/PlantCellCUlture/pltcell.doc - 1

Plant cell suspension culture

Consideration in this lecture given only to:

- Cell suspension culture (free or immobilized).
- *de novo* synthesis, not biotransformation and synthesis from precursors.

Fermentation technology and plant cell culture

Fermentation technology is applicable to the production of fine chemicals by plant cells because the plant cell is like a large microorganism.

Comparison of Microorganisms to Plant Cells Brodelius (1985)				
Parameter Microbial Cell Plant Cell				
Size	approx. 2 μ ³	>10 ⁵ µ ³		
Genetic	Procaryotic	Eucaryotic		
Shear	Insensitive	Sensitive		
Doubling time	1 h	20 h		
Fermentation time	1 - 2 days	2 - 3 weeks		
Product	extra/intracellular Mainly intracellula			
Productivity	High	Low		
Cost of media	approx. \$6 m ⁻³	Approx. \$50 m ⁻³		

Advantages of plant cell culture over field cultivation or collection of plant material

- Production under highly controlled conditions.
- Potential for manipulation to increase productivity.
- Constancy of supply
- Potential for the production of new compounds.

Examples of useful compounds produced by plant cells in suspension culture

Compound	Plant	
Antimicrobial	Catharanthus (protozoa)	
	Lithospermum (bacteria)	
Antitumour	Catharanthus	
	Campotheca	
Antispasmodic	Chamomile	
	Isodon	
	Valerian	
Food flavors	Spearmint	
	Asparagus	
	Onion	
	Mustard	
Hydrocarbons	Asclepias	
	Euphorbia	
	Guayule	
Tonics	Ginseng	
	Cinchona	
Insecticides	Pyrethrum	
	Derris	

Dr. Clem Kuek

Lectures/Pracs/Papers/IndusMicro/Lectures/PlantCellCUlture/pltcell.doc

Dr. Clem Kuek

Lectures/Pracs/Papers/IndusMicro/Lectures/PlantCellCUlture/pltcell.doc - 6

Some factors limiting the industrial utilization of plant cells

1. Slow growth of cells

- Cost of biomass production will be high. In 1985, it as estimated that the value of a compound needs to be at least \$US1000 kg⁻¹ for economic production.
- Contamination becomes a significant potential problem. In the time a plant cell replicates itself (20 - 60 h), a bacterium would have produced $10^{12} - 10^{36}$ progeny.

2. Low yield of product

Can be overcome by:

- Selection of high yielding cell lines.
- Two-stage culture to optimize the production of secondary metabolites.

Some factors limiting the industrial utilization of plant cells 2

3. Instability of cell lines

- Serial transfers of cell lines in to fresh media can lead to loss of synthetic capability.
- Reduction of cell division by using immobilized cells may be a way of overcoming the problem.

4. Requirement for differentiation for synthesis of product

- Does not appear to be an immediate solution to this problem.
- Genetic manipulations to decouple synthesis and differentiation may be the only solution.

5. Low shear resistance of cells

- Due to the size of plant cells.
- Can be overcome by the use of appropriate bioreactors, and/or immobilization of cells in protective matrices.

6. Cell aggregation

- Plant cells tend to aggregate in clumps. Resulting diffusional gradients cause differences in synthetic performance directly related to aggregate size.
- A large range in aggregate size means a wide range in synthetic capability.

Dr. Clem Kuek

Lectures/Pracs/Papers/IndusMicro/Lectures/PlantCellCUlture/pltcell.doc - 9

Dr. Clem Kuek

Plant

Coleus blumei

Panax ginseng

Catharanthus

Lithospermum

ervthrorrhizon

roseus

Thalictrum minor

Compound

Rosmarinic acid

Ginsengoside

Berberine

aimalicine

Shikonin

Lectures/Pracs/Papers/IndusMicro/Lectures/PlantCellCUlture/pltcell.doc - 10

Culture/Plant

82

6.7

1000

3.3

7 - 14

Reference

Zenk et al., 1975

Furuya & Ishii, 1972

Nakagawa et al., 1984

Matsumoto et al., 1982

Fujita et al., 1981

An overview of the development of the first commercial process for a plant cell compound

Shikonin

Synthesized in roots of the shikon plant, Lithospermum erythrorrhizon.

Shikonin

Key determinants of viability of commercial production

The potential of plant cell culture

cultures have been successfully used to obtain yields of compounds higher than those found in whole plants.

Some Selected Compounds Formed in Plant Cell Culture With a

Culture

18

27

10

1.0

14

Yield Equal to or Higher Than That of the Parent Plant (Brodelius, 1985)

% Dry Weight

Plant

22

4.1

0.01

0.3

1 - 2

Despite the limitations towards industrial utilization, suspension

- Traditional medicine in Japan
- · Has anti-bacterial and anti-inflammatory properties
- Is bright red in color
- Plants take 5 -7 years before shikonin concentration reaches 1 -2% in the roots.
- Problems in cultivation in Japan meant the importation of 10 tonnes p.a. from China and Korea.
- Pure shikonin costs about \$US1000 kg-1 (1980s).

The success of the shikonin story is partially due to

- the high price of the collected product
- the ability to improve productivity to the extent that the following comparison can be made:

A Comparison of Shikonin Production From Intact Plants and Cultivated Plant Cells			
	Time Before Harvest	Shikonin (% Dry Weight)	
Whole plant	2 - 3 years	1 - 2	
Cell suspension	3 weeks	14	

Dr. Clem Kuek

Lectures/Pracs/Papers/IndusMicro/Lectures/PlantCellCUlture/pltcell.doc - 13

Shikonin: Improvement in productivity 2

2. Improvement in formulation of media

Effects of Improvement of in Media Fujita <i>et al.</i> (1982)			
	Old Media	New Media	
Medium	LS/White	MG-5/M-9	
Culture time (d)	23	23	
Shikonin (%)	1.07	13.6	
Productivity ratio	1	12.7	

Two-Stage Culture With MG-5 and M-9 Yamada and Fujita (1983)				
	Medium		Total	
	MG-5	M-9		
Culture time (d)	9	14	23	
Growth rate (times)	7.5	3.6	27	
Shikonin (mg L ⁻¹)	0	1500	1500	

Shikonin: Improvement in productivity

1. Manipulations in cultural practice

Recognition of the product being a secondary metabolite. Separation of cell growth and product synthesis stage.

One-Stage Versus Two-Stage Culture for Shikonin Fujita <i>et al.</i> (1982)			
	One-Stage Culture Two-Stage Cultur		
Medium	White	LS/White	
Culture time (d)	14	23	
Productivity ratio	1	4.6	

Dr. Clem Kuek

Lectures/Pracs/Papers/IndusMicro/Lectures/PlantCellCUlture/pltcell.doc - 14

Immobilization of plant cells

Many products produced by plant cells are stored in vacoules. This is a limitation to their release when cells are immobilized to take advantage of such cultures and to overcome some of the problems previously alluded to.

Product release from vacoules of plant cells

For products to be released, the plasma membrane and the tonoplast (membrane surronding the vacoule) have to be passed.

Permeabilization of plant cells for product release

Chemicals can be used to make membranes within plant cells permeable to various compounds.

Concentration of Various Permeabilization Agents Required for Release of 50 and 90% of Intracellularly Stored Products From Cultivated Plant Cells (Brodelius, 1986)

	Plant	Chenopodium rubrum		Thalictrum rugosum	
	Product	Betanin		Berberine	
Permeabilization Agent	Release (%)	50	90	50	90
DMSO (% v/v)		10	35	13	30
PEA (% v/v)		0.86	0.98	0.60	0.80
Chloroform (% sat.)		54	64	50	67
Triton X-100		185	230	140	210
HDTMAB (ppm)		22	84	24	60

DMSO Dimethylsulfoxide PEA Phenethyl alcohol HDTMAB Hexadecyltrimethylammonium bromide

Dr. Clem Kuek

Lectures/Pracs/Papers/IndusMicro/Lectures/PlantCellCUlture/pltcell.doc - 17